Stars and bars through recursion.

Problem: You are given a recursive relation \[ F(n,m)=\sum_{k=1}^n F(k,m-1) \tag{A} \] where $F(n,1)=n$. Show that \[ F(n,m)=\binom{m+n-1}{n-1}. \]

Solution: Start by expanding the sum in $\text{(A})$: \[ F(n,m)=\sum_{k_1=1}^n \sum_{k_2=1}^{k_1} \cdots \sum_{k_{m-2}=1}^{k_{m-3}}\sum_{k_{m-1}=1}^{k_{m-2}} F(k_{m-1},1). \] Since $F(k_{m-1},1)=k_{m-1}$, \[ \sum_{k_{m-1}=1}^{k_{m-2}} F(k_{m-1},1)= \sum_{k_{m-1}=1}^{k_{m-2}} k_{m-1}=\frac{k_{m-2}(k_{m-2}+1)}{2} =\binom{k_{m-2}+1}{k_{m-2}-1}. \] The next sum is \[ \sum_{k_{m-2}=1}^{k_{m-3}}\binom{k_{m-2}+1}{k_{m-2}-1}; \] to evaluate this we will use the Egorychev method. Start with the first binomial coefficient integral \[ \binom{n}{k}=\frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} \frac{(1+z)^n}{z^{k+1}} dz \] to write (replacing $k_{m-2}$ with $k$ and $k_{m-3}$ with $m$ for brevity) \[ \sum_{k=1}^{m}\binom{k+1}{k-1} = \sum_{k=1}^{m} \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} \frac{(1+z)^{k+1}}{z^k} dz. \] We have the expression \[ \sum_{k=1}^{m} \qty(\frac{1+z}{z})^k \] which is the sum of a geometric series and is equal to \[ \frac{\qty(\frac{1+z}{z})^{m+1}-1}{\frac{1+z}{z}-1} =z \qty(\qty(\frac{1+z}{z})^{m+1}-1). \] There are two integrals to evaluate: \[ I_1 = \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} z(1+z)\qty(\frac{1+z}{z})^{m+1} dz \] and \[ I_2= \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} z(1+z)dz. \] $I_2=0$; $I_1$ can be split into \[ \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} z^2 \qty(\frac{1+z}{z})^{m+1} dz \] and \[ \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} z \qty(\frac{1+z}{z})^{m+1} dz. \] Using the binomial expansion \[ (1+z)^{m+1}=\sum_{r=0}^{m+1} \binom{m+1}{r} z^r \] we have \[ \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} z^2 \qty(\frac{1+z}{z})^{m+1} dz = \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} z^{1-m} \sum_{r=0}^{m+1} \binom{m+1}{r} z^r dz \] and \[ \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} z \qty(\frac{1+z}{z})^{m+1} dz = \frac{1}{2\pi i} \int_{\abs{z}=\varepsilon} z^{-m} \sum_{r=0}^{m+1} \binom{m+1}{r} z^r dz. \] $1-m+r=-1$ when $r=m-2$ so the residue from the first integral is \[ \binom{m+1}{m-2}; \] $r-m=-1$ when $r=m-1$ so the residue from the second integral is \[ \binom{m+1}{m-1}. \] One property of the binomial coefficient is that \[ \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1} \] and so \[ \binom{m+1}{m-2}+\binom{m+1}{m-1}=\binom{m+2}{m-1} \] or using the original notation \[ \binom{k_{m-3}+2}{k_{m-3}-1}. \] The next sum is \[ \sum_{k_{m-3}=1}^{k_{m-4}} \binom{k_{m-3}+2}{k_{m-3}-1} \] which using the same procedure evaluates to \[ \binom{k_{m-4}+3}{k_{m-4}-1}. \] The pattern we have established is that \[ \sum_{k=1}^n \binom{k+m}{k-1} =\binom{n+m+1}{n-1}. \] Following this process we eventually get to the sum \[ \sum_{k_1=1}^n \binom{k_1+m-2}{k_1-1} = \binom{m+n-1}{n-1}. \]

Comments

Popular posts from this blog

CSAT 1

Poor man's Daletskii-Krein

PAT 2022