Derive the Jacobian and the Hessian of $ \phi(\boldsymbol X)=\left \lVert{\boldsymbol X \boldsymbol v}\right \rVert $

$\def\half{\frac{1}{2}} \def\bm#1{\boldsymbol{#1}} \def\R{\mathbb{R}} \def\norm#1{\left\lVert #1 \right\rVert} \def\X{\bm{X}} \def\v{\bm{v}} \def\vec{\operatorname{vec}} \def\d{{\sf d}} \def\Xv{\widehat{\X\v}} \def\D{\operatorname{D}} \def\H{\operatorname{H}} \def\It{{\bm I}_2}$$\textbf{Exercise}$: Derive the Jacobian and the Hessian of $$ \phi(\boldsymbol X)=\norm{\boldsymbol X \boldsymbol v} $$ w.r.t. $\bm{X}$ where $\bm{X} \in \R^{2 \times N}$ and $\bm{v} \in \R^{N \times 1}$.

$\textit{Solution}$. Since $$\norm{\X\v}=\qty(\v^\top\X^\top\X\v)^{\half}$$ we have \begin{align*} \d\phi & = \half \qty(\v^\top\X^\top\X\v)^{-\half} \d\qty(\v^\top\X^\top\X\v) \\ & = \half \norm{\X\v}^{-1} \qty(\v^\top\qty(\d\X)^\top\X\v+\v^\top\X^\top\qty(\d\X)\v) \\ & = \half \norm{\X\v}^{-1} 2 \v^\top\X^\top\qty(\d\X)\v & {}^* \tag{I} \end{align*} ${}^*$ $\bm a^\top \bm b = \bm b^\top \bm a$
If we apply the $\vec$ operator to both sides of the equation and use the property $$ \vec\bm a^\top \X \bm b = \qty(\bm b^\top \otimes \bm a^\top) \vec\X $$ we obtain \begin{equation*} \d\phi=\norm{\X\v}^{-1} \qty(\v^\top \otimes \qty(\X\v)^\top) \d\vec\X. \end{equation*} Therefore the Jacobian is $$ \D\phi(\X)=\pdv{\phi(\X)}{\qty(\vec\X)^\top}=\norm{\X\v}^{-1} \qty(\v^\top \otimes \qty(\X\v)^\top). $$ To derive the Hessian start from ($\text{I}$) and apply the differential operator: \begin{align*} \d^2\phi & = \norm{\X\v}^{-1} \qty(\v^\top\d\X^\top\qty(\d\X)\v) -\half \norm{\X\v}^{-3} \d\qty(\v^\top\X^\top\X\v) \qty(\v^\top\X^\top\qty(\d\X)\v) & {}^{1}\\ & = \norm{\X\v}^{-1} \qty(\v^\top\d\X^\top\qty(\d\X)\v) - \norm{\X\v}^{-3} \qty(\v^\top\qty(\d\X)^\top\X\v)\qty(\v^\top\X^\top\qty(\d\X)\v) &{}^{2} \\ & = \norm{\X\v}^{-1} \tr\qty(\v\v^\top\d\X^\top\d\X) - \norm{\X\v}^{-3} \tr\qty(\v\v^\top\qty(\d\X)^\top\X\v\qty(\X\v)^\top\d\X) & {}^{3} \\ & = \norm{\X\v}^{-1} \tr\qty(\v\v^\top\d\X^\top\It\d\X) - \norm{\X\v}^{-3} \tr\qty(\v\v^\top\qty(\d\X)^\top\X\v\qty(\X\v)^\top\d\X) \\ & = \norm{\X\v}^{-1} \qty(\vec\d\X)^\top \qty(\qty(\v\v^\top)\otimes\It)(\vec\d\X) \\ &\phantom{xxxxxx}- \norm{\X\v}^{-3} \qty(\vec\d\X)^\top \qty(\qty(\v\v^\top)\otimes\qty(\X\v\qty(\X\v)^\top)^\top)(\vec\d\X) & {}^{4} \\ & = \norm{\X\v}^{-1} \qty(\d\vec\X)^\top \qty(\qty(\v\v^\top)\otimes\It)(\d\vec\X) \\ &\phantom{xxxxxx}- \norm{\X\v}^{-1} \qty(\d\vec\X)^\top \qty(\qty(\v\v^\top)\otimes\qty(\Xv\qty(\Xv)^\top))(\d\vec\X) & {}^{5} \\ & = \norm{\X\v}^{-1} \qty(\d\vec\X)^\top \qty(\qty(\v\v^\top)\otimes\qty(\It - \qty(\Xv\qty(\Xv)^\top))) \d\vec\X & {}^{6} \end{align*} ${}^1$ $\d\norm{\X\v}^{-1}=\d\qty(\v^\top\X^\top\X\v)^{-\half} =-\half\qty(\v^\top\X^\top\X\v)^{-\frac{3}{2}} \d\qty(\v^\top\X^\top\X\v)$
${}^2$ $\d\qty(\v^\top\X^\top\X\v)=\v^\top\qty(\d\X)^\top\X\v+\v^\top\X^\top\qty(\d\X)\v =\v^\top\qty(\d\X)^\top\X\v+\v^\top\qty(\d\X)^\top\X\v$
${}^3$ $\bm a^\top \bm b = \tr \bm b \bm a^\top$
${}^4$ $\tr\bm A \bm B \bm C \bm D = \qty(\vec \bm D^\top)^\top\qty(\bm C^\top \otimes \bm A)\vec \bm B = \qty(\vec \bm D)^\top \qty(\bm A \otimes \bm C^\top) \vec\bm B^\top$
${}^{5}$ $\widehat{\X\v}=\frac{\X\v}{\norm{\X\v}}$

The Hessian must be symmetric; since $\qty(\bm A \otimes \bm B)^\top=\bm A^\top \otimes \bm B^\top$ and $\bm I_2$, $\Xv\qty(\Xv)^\top$, $\v\v^\top$ are symmetric matrices $$ \qty(\qty(\v\v^\top)\otimes\qty(\It - \qty(\Xv\qty(\Xv)^\top)))^\top =\qty(\qty(\v\v^\top)\otimes\qty(\It - \qty(\Xv\qty(\Xv)^\top))) $$ and so $$ \H\phi(\X)= \frac{\partial^2 \phi}{\partial\qty(\vec\X)\partial\qty(\vec\X)^\top} =\norm{\X\v}^{-1} \qty(\qty(\v\v^\top)\otimes\qty(\It - \qty(\Xv\qty(\Xv)^\top))). $$

Comments

Popular posts from this blog

CSAT 1

Poor man's Daletskii-Krein

PAT 2022