Posts

Showing posts from March, 2023

LADR 3.B.5

This is taken from Sheldon Axler's magisterial book, aptly named “Linear Algebra Done Right”. The exercise (3.B.5 on p. 67) asks for an example of a linear map $T: \mathbb{R}^4 \rightarrow \mathbb{R}^4$ such that $\mathrm{range}(T)=N(T)$ where $N(T)$ is the null space of $T$. We know that a matrix $A$, \begin{equation} A = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \end{bmatrix} \end{equation} with $A_1$, $A_2$ two independent vectors and $A_3=aA_1+bA_2$, $A_4=cA_1+dA_2$ has a range equal to $\mathrm{Span}\{A_1,A_2\}$. $N(A)$ contains vectors $x$ with the property, \begin{equation} x_1 A_1 + x_2 A_2 + x_3 A_3 + x_4 A_4 = 0 \end{equation} or, \begin{equation} (x_1+ax_3+cx_4) A_1 + (x_2+bx_3+dx_4) A_2 = 0 \label{null_cond} \end{equation} Since $A_1$, $A_2$ are independent vectors ($\ref{null_cond}$) holds only if, \begin{align} x_1 & = - a x_3 - c x_4 \\ x_2 & = - b x_3 - d x_4 \end{align} Therefore any $x...